Coarse-grain simulations of active molecular machines in lipid bilayers.
نویسندگان
چکیده
A coarse-grain method for simulations of the dynamics of active protein inclusions in lipid bilayers is described. It combines the previously proposed hybrid simulations of bilayers [M.-J. Huang, R. Kapral, A. S. Mikhailov, and H.-Y. Chen, J. Chem. Phys. 137, 055101 (2012)], based on molecular dynamics for the lipids and multi-particle collision dynamics for the solvent, with an elastic-network description of active proteins. The method is implemented for a model molecular machine which performs active conformational motions induced by ligand binding and its release after reaction. The situation characteristic for peripheral membrane proteins is considered. Statistical investigations of the effects of single active or passive inclusions on the shape of the membrane are carried out. The results show that the peripheral machine produces asymmetric perturbations of the thickness of two leaflets of the membrane. It also produces a local saddle in the midplane height of the bilayer. Analysis of the power spectrum of the fluctuations of the membrane midplane shows that the conformational motion of the machine perturbs these membrane fluctuations. The hydrodynamic lipid flows induced by cyclic conformational changes in the machine are analyzed. It is shown that such flows are long-ranged and should provide an additional important mechanism for interactions between active inclusions in biological membranes.
منابع مشابه
Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent.
A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is presented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads, with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces ...
متن کاملA quantitative coarse-grain model for lipid bilayers.
A simplified particle-based computer model for hydrated phospholipid bilayers has been developed and applied to quantitatively predict the major physical features of fluid-phase biomembranes. Compared with available coarse-grain methods, three novel aspects are introduced. First, the main electrostatic features of the system are incorporated explicitly via charges and dipoles. Second, water is ...
متن کاملPhysical properties of mixed bilayers containing lamellar and nonlamellar lipids: insights from coarse-grain molecular dynamics simulations.
A recently developed coarse-grain model is applied to simulate hydrated membranes containing the lamellar lipid DOPC and the nonlamellar lipid DOPE. In a first series of simulations, DOPC-water and DOPE-water systems are shown to form respectively bilayers and inverse hexagonal phases, in agreement with the well-known behaviour observed experimentally. A second set of calculations is then run t...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملEffects of spherical fullerene nanoparticles on a dipalmitoyl phosphatidylcholine lipid monolayer: a coarse grain molecular dynamics approach†
The effect of carbon-based nanoparticles (CNPs) on biological systems is currently of great concern. Yet, few experimental techniques are capable of directly imaging and probing the energetics of such nano-bio systems. Here, we use coarse grain molecular dynamics simulations to study spherical fullerene molecules interacting with dipalmitoyl phosphatidylcholine (DPPC) lipid membranes. Using fre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 138 19 شماره
صفحات -
تاریخ انتشار 2013